
www.manaraa.com

ORIGINAL ARTICLE

Arcade: early dynamic property evaluation of requirements
using partitioned software architecture models

Received: 22 May 2002 / Accepted: 15 September 2002 / Published online: 3 June 2003
� Springer-Verlag London Limited 2003

Abstract A fundamental goal of software engineering
research is to develop evaluation techniques that enable
analysis early in the software development process, when
correcting errors is less costly. The Systems Engineering
Process Activities (SEPA) Arcade tool employs a num-
ber of techniques to evaluate dynamic properties of
requirements including correctness, performance, and
reliability. To mitigate a number of practical issues
associated with dynamic property evaluation, Arcade
leverages the SEPA 3D Architecture, a formal require-
ments representation that partitions requirements types
amongst a set of interrelated architecture models. This
paper presents a case study illustrating how Arcade uses
the SEPA 3D Architecture to help manage complexity
associated with dynamic property evaluation, to reduce
the level of evaluation technique expertise required to
perform dynamic property evaluations, and to support
an iterative, incremental approach that allows early
evaluation using partial requirements models.

Keywords Dynamic properties Æ Requirements
models Æ Software architecture

1 Introduction

Software architecture models are representations of
software requirements intended to prescribe a blueprint
for system implementation [1, 2]. Unlike natural-lan-
guage requirements representations, model-based
requirements representations enable a variety of tech-
niques for evaluating requirements early in the software
lifecycle, when detection and correction of errors are less

costly [3, 4]. Early evaluation results also provide valu-
able insights that can aid in managing requirements
evolution, and can serve as guidance for system imple-
mentation.

To encourage software architectures as a viable
framework for modelling and evaluating requirements,
researchers in the Laboratory for Intelligent Processes
and Systems at the University of Texas at Austin
(UT:LIPS) have developed the Systems Engineering
Process Activities (SEPA) methodology. The SEPA
methodology partitions requirements types among a set
of interrelated software architecture models collectively
referred to as the SEPA 3D Architecture: Domain
Reference Architecture (DRA), Application Architec-
ture (AA), and Implementation Architecture (IA). The
DRA specifies domain requirements (e.g., business pro-
cess functionality, data and their relationships, timing
between functions), the AA specifies non-functional
requirements (e.g., application look-and-feel, runtime
performance requirements), and the IA specifies instal-
lation requirements (e.g., available site hardware plat-
forms, middleware, and communications software). The
SEPA methodology has been successfully employed on
large distributed development projects [5], and is cur-
rently being applied to an e-business project within
Motorola called eDesign.

This paper presents Arcade. Arcade enables early
dynamic property evaluations of requirements specified
in software architecture models. Dynamic properties are
properties that are manifested during system execution,
including correctness, performance, and reliability. Early
evaluations of software architecture models cannot
provide quantitative measures of ultimate system prop-
erties, since many factors encountered later in the soft-
ware lifecycle affect properties of the system, for
example choice of algorithms, technologies, or comput-
ing platform [1]. Nevertheless, early evaluation can
provide a qualitative view of properties that are gov-
erned by the requirements specified in software archi-
tecture models. Previous publications have covered in
detail the techniques employed by Arcade for dynamic

Requirements Eng (2003) 8: 222–235
DOI 10.1007/s00766-002-0159-4

K. Suzanne Barber Æ Tom Graser Æ Jim Holt

Geoff Baker

K. S. Barber (&) Æ T. Graser
Laboratory for Intelligent Processes and Systems, University of
Texas at Austin, Austin, Texas, 78712-1084, USA
E-mail: barber@lips.utexas.edu

J. Holt Æ G. Baker
Motorola, 7700 West Parmer Lane, Austin, Texas, 78729, USA



www.manaraa.com

property evaluations [6, 7, 8]. The main contribution of
this paper is to illustrate the benefits of the Arcade ap-
proach in the context of an industrial case study. This
case study illustrates that Arcade’s qualitative evalua-
tion results can serve several valuable purposes, includ-
ing (1) aiding in detection and correction of
requirements errors, (2) aiding in requirements evolu-
tion, and (3) providing guidance to system implement-
ers.

To provide a systematic, automated approach for
early dynamic property evaluation of requirements,
Arcade leverages the SEPA 3D Architecture in con-
junction with a number of dynamic property evaluation
techniques, including model checking, discrete event
simulation, and probabilistic graph model algorithms. In
doing so, Arcade addresses several practicality issues
associated with the selected evaluation techniques. These
practicality issues can be divided into expertise-related
issues and capacity-related issues.

Expertise-related issues addressed by Arcade are: (1)
automated translation of requirements specified in a
software architecture model into a format suitable for
dynamic property evaluation techniques, and (2) auto-
mated collection and presentation of evaluation results
to stakeholders in intuitive formats. Thus, Arcade en-
ables stakeholders to perform dynamic property evalu-
ations, to understand the evaluation results, and to
make decisions based upon those results.

Arcade addresses capacity-related issues by leverag-
ing partitioned software architecture models (e.g., the
SEPA 3D Architecture) to reduce the complexity of
evaluation. This is important because complexity affects:
(1) the human capacity to produce and work with large
models and associated evaluation results, and (2) com-
puter capacity issues such as CPU and memory
requirements [9, 10]. Arcade’s support for partitioned
software architecture models mitigates complexity by
allowing dynamic property evaluation to be performed
early (e.g., using partial requirements specifications),
and iteratively (e.g., using an incremental approach to
requirements modelling and evaluation).

The remainder of this paper is organised as follows.
Section 2 describes the SEPA 3D Architecture and how
Arcade leverages its partitioned software architecture
models to provide early dynamic property evaluations.
The benefits of performing early dynamic property
evaluations are then illustrated in Sect. 3, using the
eDesign DRA as a case study. Section 4 discusses related
work, and Sect. 5 presents conclusions.

2 The SEPA 3D Architecture

The SEPA 3D Architecture provides a framework for
representing and evaluating different types of require-
ments from multiple stakeholders, including domain
experts, end users, application developers, and system
integrators. Section 2.1 discusses how the formal, com-
putational representation of requirements embodied by

the SEPA 3D Architecture facilitates requirements evo-
lution and reuse. Section 2.2 describes how Arcade
leverages the SEPA 3D Architecture to enable dynamic
property evaluation and to mitigate practicality issues
associated with dynamic property evaluation (described
in Sect. 1). Section 2.3 presents the Domain Reference
Architecture (DRA) metamodel, and Sect. 2.4 intro-
duces the eDesign DRA.

2.1 Requirements evolution and reuse

While requirements analysis and software architecture
modelling typically precede design and implementation
in the software lifecycle, requirements evolution is a
reality, both during development and following
deployment [11]. Furthermore, observations from a
previous empirical study conducted by the authors
indicate that different types of requirements (e.g., do-
main functionality, application look-and-feel, installa-
tion constraints) evolve at different rates [12]. For
example, domain requirements (functional, data, timing
requirements) may remain stable over the course of
multiple technology cycles. This stability within
requirements types provides reuse opportunities. For
example, stable domain requirements can be reused as
non-functional requirements associated with specific
technologies or installation sites evolve (‘‘sites’’ are
characterised as specific type of users as well as the
infrastructure environment where the system will reside).

Recognising that requirements types evolve at dif-
ferent rates and that reuse opportunities align with
requirements type boundaries, the SEPA methodology
delivers a comprehensive approach to partition types of
requirements into a set of related software architecture
models [13]. Derivation of the respective SEPA archi-
tectures is driven by these requirements types (Fig. 1).
The Domain Reference Architecture (DRA) is derived

Fig. 1 DRA, AA, and IA relationships

223



www.manaraa.com

from domain functional, data, and timing requirements.
For a specific customer site or type of customer site these
requirements are scoped, yielding a DRA Version cus-
tomised for that site. The Application Architecture (AA)
is created by correlating application technology com-
ponents to the domain requirements in the DRA Ver-
sion and the non-functional requirements identified by
the customer. The Implementation Architecture (IA)
represents a refinement of the AA through the addition
of site installation requirements. The IA also considers
the installation requirements and compatibility of
applications selected for the AA.

2.2 Leveraging model partitioning

The ability to partition requirements types amongst the
DRA, the AA, and the IA allows for early, iterative
dynamic property evaluation. For example, because the
DRA is a highly abstract representation of functionality
that is independent of any particular implementation,
DRA evaluation can uncover errors associated with
domain requirements early in the requirements model-
ling and analysis process. Subsequently, the AA and IA
can be used to evaluate design tradeoffs and site con-
figuration implications once customer site requirements
are known.

Arcade, in conjunction with the SEPA 3D Architec-
ture, supports partitioning in two dimensions. The first
partitioning dimension is defined by the SEPA 3D
Architecture: partitioning across requirements types
(e.g., the DRA, AA, and IA models). For example,
evaluating only the requirements specified in a DRA
reduces the complexity of the behavioural specification
by expressing system behaviour at an abstract domain
level (e.g., business process functionality, data and their
relationships, timing between functions), while deferring
evaluation of requirements specified in the AA and IA.
The second partitioning dimension is defined by parti-
tioning within a single requirements type to create a
subset model. For example, a subset model of a DRA
might represent only the domain requirements necessary
to accomplish a single domain process, thereby focusing
evaluation on specific functionality of interest early
during the requirements acquisition and modelling pro-
cess, before requirements are completely modelled. In
addition to mitigating complexity, the incremental ap-
proach supported by these partitioning dimensions can
enable the ability to evaluate the impact of requirements
changes (i.e., requirements evolution), and can be used
to highlight specific requirements dependencies.

Using both partitioning dimensions with the eDesign
requirements (e.g., evaluating eDesign DRA require-
ments in isolation from the AA and IA requirements,
and evaluating eDesign DRA subset models) presented
opportunities to assess correctness of domain require-
ments and to discover valuable information about the
dynamic property characteristics of the domain (see case
study in Sect. 3). While it is not presented in this paper,

subsequent evaluation of the eDesign AA and IA yielded
additional information concerning the effects of non-
functional requirements and installation requirements
on the dynamic properties of the system.

2.3 The SEPA Domain Reference Architecture

The SEPA Domain Reference Architecture (DRA) is
composed of Domain Reference Architecture Classes
(DRACs), each of which specifies some portion of do-
main data and functionality. These classes and their
relationships become a reusable blueprint that guides
development efforts in terms of (1) the functional, data,
and timing (i.e., ordering of functions) requirements to
be satisfied, and (2) prescribed architectural structure
specifying collections of and dependencies between (i.e.,
data or timing) system functionality. Each time the
blueprint is reused for a new system development effort,
DRACs may be instantiated by different applications
(i.e., implementation solutions).

The functionality and data allocated to a DRAC, and
the interrelationships between DRACs, are represented
using a meta-model composed of the three submodels
shown in Fig. 2: the Declarative Model (D-M) defines
the attributes (i.e., data and events) and services (i.e.,
functionality) that should be offered by an instance of
the DRAC specification; the Behavioural Model (B-M)
describes the behaviour expected from an instance of the
DRAC through a high-level state chart; and the Inte-
gration Model (I-M) defines the constraints and depen-
dencies between DRAC instances resulting from the
distribution of dependent domain functions across
DRACs. These dependencies are an artifact of the input
and output of data and events among DRAC services
(i.e., domain Function1 receives EventX from domain
Function2) and are described in predicates capturing
service pre- and post-conditions.

Fig. 2 Domain Reference Architecture class meta-model

224



www.manaraa.com

2.4 Case study domain: the eDesign system

The eDesign system is being developed by Motorola’s
Semiconductor Products Sector (SPS) to efficiently
deliver SPS product technical information and collat-
eral products to internal and external Motorola cus-
tomers. Major functionality in the eDesign system
includes Document Authoring, Document Configura-
tion Management, Content Administration, and Con-
tent Delivery (Fig. 3). eDesign is being deployed with a
mix of off-the-shelf as well as in-house developed
applications. The SEPA methodology and its sup-
porting tools were chosen because the eDesign project
is being developed in a very iterative, rapid fashion
that could benefit from SEPA’s approach to require-
ments evolution. Furthermore, in the e-business do-
main the business needs (e.g., domain requirements)
are evolving at a less rapid pace than technology
requirements (e.g., the AA and IA). Therefore, the
goals of this effort were: (1) to provide the eDesign
team with a solid requirements foundation upon which
to rapidly evolve their system, (2) to characterise the
dynamic properties governed by requirements so that
the eDesign team can make better decisions related to
evolving technology requirements, and (3) to provide
system implementation guidance.

The first step in eliciting the domain requirements of
the eDesign system was to perform Requirements
Acquisition (RA) to acquire domain usage profiles
describing functionality in the domain (two of these
usage profiles are used as examples in Sect. 3, and are
depicted in Table 1). Usage profiles help to explicitly
define and consequently scope the domain functionality,
data, timing, interactions, and user types. A usage pro-
file is composed of one or more domain tasks, where a

task specification includes the name of a performer
capable of executing the task, input data/events required
for execution, output data/events produced, and pre-/
post-conditions defining necessary conditions to begin
execution and expected conditions following execution,
respectively.

The full set of usage profiles acquired during RA ses-
sions provided the basis from which an initial DRA ver-
sion was derived (Fig. 3). Subsequent requirements were
gathered to support the definition of the eDesign AA and
IA models. Following construction of the initial eDesign
DRA, the team proceeded to evaluate its dynamic prop-
erties using Arcade. Section 3 presents this work.

3 Evaluating dynamic properties with Arcade

Arcade supports evaluation of three categories of dy-
namic properties: correctness, performance, and reliabil-
ity. Because no single evaluation technique is suitable for
evaluating all three categories of dynamic properties,
Arcade employs a number of techniques, including
model checking, discrete event simulation, and proba-
bilistic graph models [6, 7, 8]. The choice of techniques
was based upon two criteria: (1) suitability of the tech-
nique for evaluating the dynamic properties of interest,
and (2) availability of tools implementing evaluation
techniques. For the Arcade research it was sufficient to
choose well-established techniques that could demon-
strate the efficacy of early evaluation using partitioned
software architecture models. The selection of a partic-
ular set of techniques for the Arcade research does not
limit similar approaches from being employed with
other evaluation techniques (for example, process alge-
bras, queuing network models).

Fig. 3 eDesign domain and
stakeholders

225



www.manaraa.com

To assist non-experts in executing dynamic property
evaluations and conducting early analysis, Arcade
automates (1) translating requirements specified in a
software architecture model into a format suitable for
use by evaluation techniques, and (2) collecting and
formatting evaluation results into intuitive presenta-
tions on behalf of stakeholders. To address the capacity
issues identified in Sect. 1, Arcade supports early
evaluation of partial requirements specifications, lever-
aging partitioned software architecture models along
the two dimensions discussed in Sect. 2.2 (e.g., parti-
tioning across the SEPA 3D Architecture models, and
partitioning within a single SEPA 3D Architecture
model).

Section 3.1 discusses evaluating correctness pro-
perties of the eDesign DRA. Section 3.2 discusses

performance evaluation, and Sect. 3.3 discusses reli-
ability evaluation. Section 3.4 presents the incremental
approach taken for eDesign correctness evaluations,
emphasising how subset models of the eDesign DRA
helped mitigate complexity encountered while identify-
ing and repairing correctness errors.

3.1 DRA correctness evaluation

Arcade employs the SPIN model checker and its asso-
ciated Promela modeling language for evaluating three
correctness properties of a DRA: safety, liveness, and
completeness [4]. Each DRAC is represented by a Pro-
mela process. Predicates in the DRAC (e.g., pre-/post-
conditions) are modelled as guards that either block or

Table 1 eDesign usage profiles

Usage profile: Publish new technical document Usage profile: Access product information

Task: Create technical documentation Task: Search for product
Performer: author Performer: customer
Input data/events: product specification Input data/events: product name or taxonomy

search criteria
Output data/events: technical documentation Output data/events: product list
Pre-condition: request for technical
documentation

Pre-condition: customer requires product
info and product state is ‘‘launched’’
and product is assigned to a search category

Post-condition: technical document created Post-condition: product list selected or
request cancelled

Task: Create technical document metadata Task: Select product summary page (PSP)
Performer: author Performer: customer
Input data/events: document attributes,
parametric data

Input data/events: product list

Output data/events: technical
document metadata

Output data/events: PSP

Pre-condition: technical document created Pre-condition: product list selected
Post-condition: technical document
metadata created

Post-condition: PSP displayed or request
cancelled

Task: Check in technical documentation Task: Download product collateral
Performer: author Performer: customer
Input data/events: technical documentation Input data/events: PSP
Output data/events: none Output data/events: product collateral

Information
Pre-condition: technical document created Pre-condition: PSP displayed and

collateral state is ‘‘launched’’
Post-condition: technical document
under configuration management

Post-condition: product collateral
downloaded or request cancelled

Task: Check in technical document metadata
Performer: author
Input data/events: technical document
metadata
Output data/events: none
Pre-condition: technical document
metadata created
Post-condition: technical document
metadata checked in

Task: Change product state
Performer: publisher
Input data/events: technical document,
technical document metadata
Output data/events: none
Pre-condition: technical document checked in
and technical document metadata checked in
Post-condition: technical document state
is ‘‘staged’’

226



www.manaraa.com

enable other statements for execution. Triggers for pre-
conditions and post-conditions include sending and
reception of events and data. When a pre-condition
becomes executable, the DRAC transitions to an
‘‘EXECUTING’’ state for the corresponding DRAC
service. Eventually, the post-condition for the service
becomes executable (assuming that the model is correct
and the post-condition can trigger), and the DRAC re-
turns to an ‘‘IDLE’’ state.

Model checking techniques require a model to be
closed. Therefore, Arcade automatically generates two

special Promela processes to model exchange of data
and events with external entities: (1) the Usage Profiles
process generates initial events/data required to initiate
usage profile executions, and (2) the External process
receives and generates all events/data that are designated
as ‘‘external’’ to the DRA.

If a service has only data and event references in its
pre-condition, these data and events will be generated by
the Usage Profiles process upon SPIN startup. If a pre-
condition has references to both internal and external
input events/data, the External process will monitor for
the existence of internal data/events and upon detecting
them it will generate the external events/data identified
in the pre-condition. The predicates for generating these
events/data include a check to determine whether the
external events/data are already in a channel. This check
prevents false generation of duplicate events/data before
the receiving service process has a chance to consume the
data/events.

The following sections discuss each correctness
property using examples from the eDesign case study.

3.1.1 DRA safety evaluation

In the context of DRA evaluation, safety is informally
defined as ‘‘the system never terminates in an undesir-
able end state’’ [15, 16, 17]. For a DRA, undesirable end
states include unterminated service executions, and
unconsumed events or data. Therefore, Arcade verifies
that the following conditions hold: (1) if the pre-condi-
tion of a service has been satisfied, the service will
eventually execute, (2) if a service executes, eventually its
post-condition will be satisfied, and (3) all events and
data produced as outputs of a service are eventually
consumed. Formally (expressed in LTL):

SPIN produces counterexamples illustrating system
executions inwhich safety errors occur, expressed in terms
of the Promela model which has been model-checked by
SPIN. For ease of understanding, Arcade presents SPIN
counterexamples using an Architecture Trace Diagram
(ATD) (Fig. 4) [18], an extension to ITU Message Se-
quence Charts [19]. In an ATD, the vertical dimension
depicts time (top to bottom), and the horizontal dimen-
sion represents DRACs involved in the trace. Each
DRAC has a lifeline that proceeds in the vertical dimen-
sion. Trace states are arranged in time sequence along the
lifeline of their associated DRAC. Exchange of data and
events in the DRA is shown by a directed arc from the
sending state to the receiving state.

Figure 5 shows an Arcade ATD zoomed in to view
safety errors discovered in the eDesign usage profile
‘‘Publish New Technical Document’’ (‘‘ERROR: no
corresponding reception’’). The accompanying panner
window shows a thumbnail image of the ATD. Safety
errors were caused by two unconsumed events (‘‘PSP state
is staged’’, and ‘‘Product attributes changed’’) that have

Fig. 4 Architecture trace diagram description

227



www.manaraa.com

been output by the ‘‘Change Product State’’ service of the
‘‘Product Owner’’ DRAC (Fig. 3). These events were
output as specified by the post-condition of the ‘‘Change
Product State’’ service (Table 1), but were not subse-
quently consumed by any pre-condition. When this type
of safety error occurs, the architect and domain experts
must determine whether the errors occurred as a result of
(1) an invalid post-condition (e.g. the ‘‘PSP state is
changed’’ and ‘‘Product attributes changed’’ events
should not have been generated in the post-condition for
the ‘‘Change Product State’’ service), or (2) as a result of
an invalid pre-condition associated with other service(s)
of the DRA (e.g., some other service requires the ‘‘PSP
state is staged’’ and ‘‘Product attributes changed’’ events,
but this requirementwas not specified in theDRA.) In this
example the resolution was determined to be the latter
(invalid pre-condition on another service). As a result, the
eDesign DRA was updated to reflect the resolution.

3.1.2 DRA liveness evaluation

The liveness property for a DRA is informally defined
as: ‘‘The system eventually enters all desirable states’’
[15, 16, 17]. A DRA has no liveness errors for this
property when the following conditions hold: (1) no
unreachable services exist, and (2) all required paths
between services are traversable. Unreachable services
occur in a DRA when an entire pre-condition is never
satisfiable. Untraversable paths occur in a DRA when a
disjunct sub-expression of a pre-condition is never sat-
isfiable. Formally, this liveness property is defined by the
following LTL expression:

Details of Promela code are difficult for stakeholders
to interpret without specialised knowledge of SPIN/

Promela (SPIN reports liveness errors as the specific
line of Promela code that cannot be reached). There-
fore, Arcade uses its knowledge of the DRA (and how
it was translated to Promela) to present liveness eval-
uation results to stakeholders by indicating unsatisfi-
able pre-condition (sub)expressions in DRA
terminology.

Figure 6 shows Arcade presenting an unsatisfiable
pre-condition in the eDesign DRA. This liveness error
occurred for the ‘‘Select PSP’’ service in the ‘‘Customer’’
DRAC. An eDesign domain expert determined that the
‘‘Product List’’ input data was never produced by any
post-condition of any service, and the DRA was up-
dated to correct the error.

3.1.3 DRA completeness evaluation

DRA completeness is informally defined as: ‘‘An
architecture reflects the features required by domain
experts.’’ In other words, threads of execution speci-
fied within a DRA must reflect sequences of service
executions that domain experts require (i.e., domain
usage profiles), with no missing or extraneous service
executions. Unfortunately, model checking tools such
as SPIN cannot check that a software architecture
provides correct semantics (completeness) without
requiring additional properties to be defined in a
language such as LTL [20]. This requirement actually
increases the need for expertise when performing
completeness evaluation with a model checker. Arcade
bypasses this expertise issue by taking advantage of
the following observations. Completeness errors are
associated with unexpected behaviour of the system,
where behaviors are described by respective usage
profiles. These errors are typically manifested in
sequences of service executions (usage profiles) that:
(1) are missing expected service executions, (2) contain

Fig. 5 Arcade presentation of
safety errors (architecture trace
diagram)

228



www.manaraa.com

unexpected service executions, (3) contain unexpected
paths, or (4) are missing paths. Therefore, to assist the
architect in verifying dynamic completeness, Arcade
employs the SPIN guided simulation feature [14] to
generate a visualisation of DRA threads of execution
called an Execution Space (Fig. 7). Rather than spec-
ifying LTL expressions, domain experts can inspect an
Execution Space to detect completeness errors. While
this evaluation approach can be very complex for a
large DRA, experience with eDesign indicates that the
DRA subset model partitioning supported by Arcade
can make this task manageable (to be discussed more
in Sect. 3.1.4).

An Execution Space is a directed graph representing
threads of service executions allowed by the DRA. A
vertex in the graph represents a service execution state,
and an edge represents a path from one service execution
state to another. Two additional vertices in the Execu-
tion Space are a super-initial state (INIT), and a super-
final state (TERM). These vertices provide common
initiation and termination states for paths in the Exe-
cution Space.

Figure 7a illustrates an Execution Space for a subset
model of the eDesign DRA (the ‘‘Access Product
Information’’ usage profile). An eDesign domain expert

identified a completeness error in this Execution Space,
noting that there was no path from the ‘‘Search for
Product’’ service to the TERM node. This path should
exist to support the domain requirement to allow a
customer to cancel their product search (Table 1). It was
determined that the initial DRA was missing the ‘‘Re-
quest Cancelled’’ disjunct in the ‘‘Search for Product’’
post-condition. The corrected eDesign DRA produced
the Execution Space in Fig. 7b.

Arcade creates an Execution Space via iteration over
the following steps: (1) simulating DRA execution and
merging all states occurring during simulation into a
low-level state space (each simulation run creates a
unique path in the low-level state space), and (2) per-
forming a partial order reduction over the low-level
state space with respect to service execution states. A
path in the low-level state space is a total order rep-
resenting one execution of the DRA. A branch in the
low-level state space occurs when alternate interleav-
ings of simulation events are possible (for example,
different interleaving of sending or reception of events).
Arcade performs partial order reduction of the low-
level state space into the Execution Space by merging
paths that share identical partial orders of service
execution states.

Fig. 6 Arcade presentation of
liveness errors (unsatisfiable
pre-condition)

Fig. 7 a Execution space with
completeness error. b Corrected
execution space

229



www.manaraa.com

3.1.4 Using subset models to evaluate eDesign correctness

To ensure that a system implementation meets stake-
holder expectations, it is important to establish cor-
rectness of domain requirements specified in a DRA
before using the DRA as a system blueprint. Further-
more, domain requirements must be correctly modelled
before a cost-effective system targeting other non-func-
tional requirements such as maintainability, perfor-
mance, and reliability can be built [21, 1]. Correctness
errors may arise as a result of a number of requirements
acquisition and modelling issues, including (1) mis-
statement of requirements by stakeholders, (2) misrep-
resentation or misinterpretation of requirements by the
requirements engineer, or (3) omission of requirements
by stakeholders.

Arcade evaluation detected a number of correctness
errors in the initial eDesign DRA. This was partially due
to requirements acquisition and modeling issues such as
those mentioned above, and partially due to the fact that
correctness errors tend to propagate under model
checking and simulation. For example, a liveness error
associated with a particular service may cause many
other liveness errors for other services that have causal
dependencies on that service (e.g., the dependent services
require events or data to become available via the post-
condition associated with the service exhibiting the ini-
tial liveness error). Propagation of correctness errors
makes it difficult for stakeholders to determine exactly
which errors to address first. To mitigate this complexity
issue, it was decided that correctness evaluations of
DRA subset models would be appropriate for eDesign.
This decision allowed evaluation to focus on require-
ments errors while minimising the effort expended to
sort through correctness error propagations.

The technique employed to form DRA subset models
was to further partition the requirements modelled in the
initial DRA by slicing the DRA according to usage
profile boundaries. This resulted in a number of DRA
subset models, each of which was self-contained in terms
of the ability to support execution of a single usage
profile. The next steps were: (1) to iteratively evaluate
and repair correctness errors for each of the subset

models, (2) to merge the correct subset models into a
unified DRA model, and (3) to evaluate the correctness
of the resulting DRA.

Arriving at a correct eDesign DRA required five
iterations of subset model evaluation. The number and
types of errors detected, and their associated types of
DRA corrections, are shown in Fig. 8. During the iter-
ative evaluation and correction process, completeness
errors were detected by stakeholder examinations of
Execution Spaces produced by Arcade simulations, and
safety and liveness errors were detected using Arcade’s
automated model checking.

Initially, completeness errors comprised the majority
of errors uncovered by correctness evaluations. This first
round of completeness errors was addressed primarily by
adjusting pre- and post-conditions, and in one instance by
distributing the domain functionality of a single DRA
service across multiple services. Following these adjust-
ments, safety and liveness errors began to be identified in
greater numbers. The remaining iterations of evaluation
and correction successively reduced the number of errors
detected, and the majority of errors detected in the final
iterations were safety errors. These results indicate that by
the later iterations most of the required domain func-
tionality was correctly modelled (e.g., there were fewer
completeness and liveness errors), and there remained
some adjustments to be made with regard to the details of
data and event exchanges (e.g., most of the remaining
errors were safety errors). Table 2 summarises the types of
correctness errors found and the methods of detection for
each revision of the eDesign DRA. These statistics high-
light that simulation was an effective means of detecting
correctness errors early in the process, and model check-
ing was effective later in the process.

Arcade’s incremental approach proved to be effective
in support of detecting and repairing correctness errors.
Following the final iteration of DRA subset model
evaluation, the individual subset models were merged
into a unified eDesign DRA, and correctness evaluation
was reapplied. This final evaluation yielded no addi-
tional correctness errors, and at this point the team was
ready to proceed with performance and reliability eval-
uation.

Fig. 8 eDesign correctness
errors and resolutions

230



www.manaraa.com

3.2 DRA performance evaluation

Arcade uses the Simpack simulation toolkit as the basis
for its performance evaluations [22]. Simpack provides a
simulation kernel and simulation support routines,
including support for definition and management of re-
sources to perform work (called facilities in Simpack),
event scheduling and delivery, statistical distribution
sampling, and statistics collection. Simulation with Sim-
pack is performed by moving tokens (units of work)
through facilities (work performers). Therefore, Arcade
maps DRA services to Simpack facilities, and maps do-
main usage profiles to Simpack tokens. Arcade also de-
fines simulation events and event handlers required to
move usage profiles (tokens) through services (facilities)
based on task sequencings specified in usage profiles.
Low-level exchange of events and data are not modelled
because these details are not necessary to perform the
qualitative performance evaluations that Arcade delivers.

The approach is illustrated in Fig. 9 using the eDe-
sign ‘‘Publish New Technical Document’’ usage profile
(Table 1). Arcade initiates a simulation run by sched-
uling a start_usage_profile event using a negative expo-
nential distribution to model the interarrival time of
usage profile requests. When the Simpack kernel delivers
a start_usage_profile event, Arcade randomly chooses a
usage profile to begin executing (step 1 in Fig. 6). This
choice is weighted by the frequencies of execution
associated with each usage profile. When a usage profile

has been selected, Arcade schedules (1) a request_service
event for the first service in the selected usage profile,
and (2) another start_usage_profile event (using the
appropriate interarrival time). The request_service event
is queued pending service availability (step 2 in Fig. 6).
When the requested service becomes available, Arcade
allocates the facility associated with the requested ser-
vice (causing subsequent service requests to become
queued waiting for service completion) and schedules a
service_completed event in the simulation using a normal
distribution centered around the service duration (step 3
in Fig. 6). When the service_completed event is delivered,
Arcade schedules a request_service event for the next
service defined in the usage profile (step 4 in Fig. 6). This
process is repeated until the usage profile has been
completed (step 5 in Fig. 6). Simulation continues in this
manner until a maximum simulation time has been
reached. Throughout this process, Arcade (with the aid
of Simpack) collects performance statistics.

Arcade can produce many different performance
measures for a DRA, including usage profile latency,
service utilisation, and component utilisation [8]. Two
eDesign performance measures are depicted in the
graphs in Fig. 10: usage profile latencies, and service
utilisation. Usage profile latency reflects the amount of
time an eDesign customer can expect to wait for a usage
profile to complete, and service utilisation indicates the
amount of time a service spends performing work. The
graphs in Fig. 10 can be correlated using their x-axes,
where IA_<N> represents the mean interarrival time of
start_usage_profile events (in N simulation units) over a
set of simulation runs.

Table 2 Summary statistics
for eDesign correctness
evaluation

DRA
revision

Safety
errors

Liveness
errors

Completneness
errors

Detected by
simulation

Detected
model checking

1 1 0 6 6 1
2 10 4 4 4 14
3 6 3 1 1 9
4 3 1 1 1 4
5 0 0 0 0 0
Totals 20 8 12 12 28

Fig. 9 Arcade performance simulation approach

231



www.manaraa.com

According to eDesign domain experts, it is particu-
larly important for the latency of the ‘‘Access Product
Information’’ usage profile to be minimised in order to
satisfy external customers. Noting that the ‘‘Download
Product Collateral’’ service is a constituent of the ‘‘Ac-
cess Product Information’’ usage profile (Table 1), the
graphs in Fig. 10 indicate that the latency of the ‘‘Access
Product Information’’ usage profile increases exponen-
tially once the utilisation of the ‘‘Download Product
Collateral’’ service reaches approximately 75% (at
IA_45 when the mean interarrival time of
start_usage_profile events is 45 simulation time units).
The implication of this observation is that system
implementers should seek to design the system in such a
way that the ‘‘Download Product Collateral’’ service
maintains utilisation of less than 75%.

DRA Performance concerns center on inherent do-
main performance characteristics, including: (1) ex-
change of events/data between services, (2) usage profiles
that represent anticipated system usage patterns, (3)
expected frequency of execution for usage profiles, and
(4) expected service execution durations. Early perfor-
mance evaluation using a DRA is useful in determining
the performance characteristics realised by the domain
requirements represented in the DRA. Later, when the
AA and IA are specified, tradeoff decisions can be made
with respect to knowledge gained from early evaluation
of the DRA (e.g., for eDesign, critical attention should
be paid to tradeoffs associated with choosing or building
an application that provides the ‘‘Download Product
Collateral’’ service, and when choosing the hardware
and infrastructure on which this application is to be
deployed). Once the AA and IA decisions have been
made, additional information in the AA and IA can be
supplied to Arcade for more detailed performance
evaluations intended to assess the impact of these deci-
sions on system performance. For example, recognising
that the ‘‘Download Product Collateral’’ service was
critical, eDesign stakeholders focused performance
evaluations of the eDesign IA on understanding the

CPU requirements for acceptable utilisation of the
‘‘Download Product Collateral Service’’ (with the intent
of achieving an acceptable latency for the ‘‘Access
Product Information’’ usage profile).

As requirements evolve, it is likely that evolution will
occur more frequently for the AA and IA (Sect. 2.1).
Therefore, when the DRA is reused, DRA evaluation
results will still be valid with respect to domain require-
ments, and these results can also be reused to support the
AA and IA evolution process. In addition, results of all
the Arcade performance evaluations (DRA, AA, and IA)
can serve as guidance to system implementers.

3.3 DRA reliability evaluation

Arcade employs a reliability estimation technique called
Scenario-Based Reliability Analysis (SBRA) [23]. The
SBRA technique consists of (1) constructing a proba-
bilistic reliability model called a Component Depen-
dency Graph (CDG), and (2) applying the SBRA
algorithm to the CDG model to yield a reliability esti-
mate. A CDG is constructed using an architecture
model, estimated service execution times, and usage
profiles with associated probabilities of execution. Ar-
cade can perform reliability evaluation for individual
services (SBRA-S), and for DRACs (SBRA-D) [6].

The CDG model used for SBRA-S is a connected
graph defined by CDG=<N, E, init, term>, where N is
the set of nodes in the graph, E is the set of edges in the
graph, init is a common start node, and term is a com-
mon termination node. A node in the CDG represents a
service, defined by ni=<SVCi, RSVCi, AESVCi>, where
SVCi is the service name, RSVCi is the reliability of SVCi,
and AESVCi is the average execution time of SVCi.
Directed edges in the CDG represent execution paths
between services, and are defined as eij=<Tij, RTij,
PTij>where Tij is the transition name from node ni to
node nj, RTij is the transition reliability, and PTij is the
transition probability.

The SBRA algorithm calculates reliability by iterat-
ing over the transitions in a CDG graph model. During

Fig. 10 eDesign usage profile latency and service utilization

232



www.manaraa.com

iteration, the algorithm chooses paths based upon
transition probabilities (PTij). As transitions are fol-
lowed, cumulative reliability metrics are calculated using
transition reliabilities (RTij) and service reliabilities
(RSVCi). Iteration continues until a pre-specified maxi-
mum system execution time is reached.

Arcade’s approach for reliability evaluation using
SBRA-S involves repeatedly applying the SBRA tech-
niquewhile (1) constraining the reliability of all services to
100%with the exception of a single service and (2) varying
the reliability parameter of that service from 0% to 100%
to assess the sensitivity of reliability of the entire system to
the reliability of the service. This process is repeated for
each service. The approach forDRAreliability evaluation
using SBRA-D is similar to SBRA-S, with a focus on
DRAC reliability rather than service reliability.

The SBRA-D evaluation results for the eDesign
DRA are shown in Fig. 11. From these results it can be
seen that the ‘‘Customer’’ DRAC has the most potential
to impact system reliability. As with early DRA per-
formance evaluation results, early DRA reliability re-
sults can serve to assist in AA and IA decision making,
can be compared to the results of AA or IA reliability
evaluations to assess the impact of decisions, and can
provide guidance to system implementers.

4 Related work

With regard to correctness evaluation, many researchers
recognise the need to work with early, partial require-
ments models. For example, researchers applying model
checking to requirements of a fault tolerant system de-
voted considerable effort towards mitigating the size of
the state space that would result from a model repre-
senting their requirements [19]. The approach selected
was to partition requirements based upon the class of
fault that would occur during system execution if a
requirement were violated. A model of the system design
was created, and requirements were expressed in LTL
formulae and then model-checked. This approach fo-
cused on the important topic of mitigating complexity
issues associated with memory and CPU utilisation, but
did not address the issues of human expertise that are

addressed by Arcade and the SEPA 3D Architecture
(e.g., the issue of automatically creating the model to be
checked from requirements specifications, and the issue
of presenting results to non-expert stakeholders), nor
was there a focus on early evaluation in support of
requirements evolution and reuse. Because the DRA is a
requirements specification, DRA evaluation can occur
much early than checking whether a detailed system
model can satisfy a specific requirement (or require-
ments set). Similarly, researchers using the Software
Cost Reduction (SCR) approach acknowledged that
presenting model checking results to users as logic for-
mulae rather than in terms of the requirements models
stakeholders were accustomed to remains an issue with
their approach [24]. Other researchers have focused on
compositional approaches to reduce complexity under
model checking (e.g., partitioning by functional
requirements encapsulation), but again the focus has not
been on practicality issues associated with non-experts
[25, 26]. An approach to partitioning requirements to be
model checked based upon scenarios has been presented,
but this work did not address presentation of model
checking results to stakeholders in non-expert termi-
nology [27].

In the performance evaluation domain, researchers
have applied various approaches including queuing
network models (QNM) [28, 29, 30], discrete event
simulation [31, 32], Software Performance Engineering
(SPE) [33], and process algebras [34] for performance
evaluation of software architectures. Researchers
working with QNM acknowledge a potential state
explosion problem, and are seeking methods to reduce
the model size based on MSC representations [35]. There
is also a recognition that QNM based evaluation results
must be translated into conclusions and recommenda-
tions for non-experts [29]. Researchers working with
simulation approaches have recognised a need for
automated translation of requirements into appropriate
simulation models [3], and researchers working on pro-
cess algebras have recognised that these formalisms need
support for non-expert users (in this case via translation
of architectural descriptions that integrate structural
requirements with performance requirements into pro-
cess algebra representations) [34]. While some of these
research efforts recognise the need to support non-ex-
perts, and to allow partial model evaluation, these
approaches do not explicitly integrate the requirements
modelling activity with the performance evaluation
activity as Arcade does, and most treat software archi-
tectures as design-level artifacts rather than require-
ments representations.

Researchers working on reliability evaluation
have used simulation [36], analytical methods [37],
and probabilistic models [22]. As with performance
evaluation, most of this work does not explicitly recog-
nise architectural models as requirements models, and
the topics of partitioning requirements to mitigate
complexity, promote requirements reuse, or help with
requirements evolution do not appear (although Yacoub

Fig. 11 Arcade reliability evaluation for eDesign DRA (SBRA-D)

233



www.manaraa.com

uses scenarios as the basis for evaluation, there is no
discussion of partitioning of the model [23]). Further-
more, none of this research addresses mitigating the
need for expertise in the selected technique, or the ability
to support early evaluation.

5 Conclusions

This research investigates the efficacy of evaluating
dynamic properties of requirements (e.g. correctness,
performance, and reliability) early in the software life-
cycle, when it is less costly to address errors. Efficacy
issues include (1) practicality of performing evaluations
and (2) usefulness of evaluation results (i.e., cost vs.
benefit).

To mitigate a number of practical issues associated
with dynamic property evaluation, Arcade leverages the
SEPA 3D Architecture, a formal requirements represen-
tation that partitions requirements types amongst a set of
interrelated architecture models. The eDesign case study
illustrates how Arcade effectively uses the SEPA 3D
Architecture to help manage complexity, to reduce the
level of expertise required to perform dynamic property
evaluations, and to support an iterative approach allow-
ing early, incremental evaluation using partial models.
While a small initial investment in time and training was
required to adopt the Arcade approach, the eDesign team
was subsequently able to gain valuable insight from cor-
rectness, performance, and reliability evaluations, for
verifying requirements specified in the architecture and
providing rationale for subsequent design and imple-
mentation decisions that would have otherwise been
supported solely by intuition.

Arcade’s incremental approach was effective for
mitigating complexity while discovering correctness
errors in the eDesign DRA. Correctness evaluation
provided the opportunity to resolve functional errors
(completeness, safety, and liveness) before significant
architecture commitments had been made. Project par-
ticipants acknowledged the cost savings in correcting
errors in the DRA specification rather than correcting
errors detected after system implementation.

From a performance and reliability perspective, Ar-
cade’s DRA evaluation yielded useful information early
in the development process, highlighting critical archi-
tecture elements. These results influenced DRA refine-
ment as well as subsequent design decisions involving
application implementation and computing platform
selection. For example, having determined the high
utilisation of the service ‘‘Download Product Collateral’’
during DRA performance evaluations, subsequent
eDesign performance evaluations focused on how
non-functional and installation requirements affected
this critical service. The eDesign Implementation
Architecture (IA) specified an installation requirement
to locate Content Delivery functionality (including the
‘‘Download Product Collateral’’ service) on a separate
CPU from the Document Authoring functionality. The

resulting Arcade IA performance evaluations suggested
that Content Delivery functionality required a CPU with
approximately four times the execution speed of the
CPU supporting Document Authoring functionality.

A general observation of the eDesign case study is the
value of early evaluation. Despite the DRA being a
partitioned requirements representation focusing on
domain functionality and data, early DRA evaluation
results impacted subsequent architecting decisions.
Under previously applied evaluation approaches, such
errors were not caught until more detailed models (or
the actual implementation) could be constructed (i.e.,
after significant design decisions were already made).

The basis for the Arcade approach is to reduce the
need for tool expertise by providing a layer of automa-
tion between well-defined representations appropriate
for early requirements specification and sophisticated
evaluation techniques capable of offering valuable
insight. However, as with any attempt to render an
approach more easily adopted, reducing the need for
expertise comes at the cost of limiting access to advanced
features of underlying evaluation tools. For example,
non-expert users who have no knowledge of model
checkers and associated languages employed by Arcade
(e.g., SPIN and Promela) can use Arcade to verify
automatically defined correctness properties, but will not
have the knowledge required to manually define addi-
tional properties for verification. While it is possible for
an expert user to employ Arcade artifacts (for example
the Promela code generated by Arcade) as a starting
point for advanced evaluations using underlying evalu-
ation tools directly, more research is needed to determine
the extent to which advanced features can be made di-
rectly available to developers without requiring an
unacceptable level of training and expertise, thereby
reducing the tool’s practical appeal.

Acknowledgements This research was supported in part by the
Schlumberger Foundation Grant and the Texas Higher Education
Coordinating Board Advanced Technology Program (ATP
#003658-0188-1999).

References

1. Bass L, Clements P, Kazman R (1998) Software architecture in
practice. SEI series in software engineering. Addison-Wesley,
Reading, MA

2. Perry DE, Wolf AL (1992) Foundations for the study of soft-
ware architecture. Softw Eng Notes 17(4):40–52

3. Hsia P, Davis A, Kung D (1993) Status report: requirements
engineering. IEEE Softw 10(6):75–79

4. Wieringa R, Dubois E (1998) Integrating semi-formal and
formal software specification techniques. Inform Syst 23(3/
4):159–178

5. Barber KS et al (1999) Requirements evolution and reuse using
the systems engineering process activities (SEPA). Aust J In-
form Syst (Special Issue on Requirements Engineering) 7(1):75–
97

6. Barber KS et al (2001) Reliability estimation techniques for
domain reference architectures. In: 14th international confer-
ence on software and systems engineering and their applica-
tions (ICSSEA 2001), Paris

234



www.manaraa.com

7. Barber KS, Graser TJ, Holt J. Evaluating dynamic correctness
properties of domain reference architectures using a combina-
tion of simulation and model checking. In: 13th international
conference in software engineering and knowledge engineering
(SEKE 2001), Buenos Aires

8. Barber KS, Holt J, Baker G (2002) Performance evaluation of
domain reference architectures. In: 14th international confer-
ence in software engineering and knowledge engineering
(SEKE 2002), Ischia, Italy

9. Sommerville I (1992) Software engineering (4th edn). Addison-
Wesley, Wokingham, UK

10. Tsai J, Xu K (1999) An empirical evaluation of deadlock
detection in software architecture specifications. Ann Softw
Eng 7:95–126

11. Hofmann HF, Lehner F (2001) Requirements engineering as a
success factor in software projects. IEEE Softw 18(4):58–66

12. Barber KS, Graser TJ, Holt J (2001) Evolution of requirements
and architectures: an empirical-based analysis. In: 1st interna-
tional workshop on model-based requirements engineering
(MBRE’01), San Diego, CA

13. Barber KS, Graser TJ, Holt J. A multi-level software archi-
tecture metamodel to support the capture and evaluation of
stakeholder concerns. In: 5th world multi-conference on sys-
tematics, cybernatics and informatics (SCI 2001), Orlando, FL

14. Holzman GJ (1997) The model checker SPIN. IEEE Trans
Softw Eng 23(5):279–295

15. Alpern B, Schneider FB (1987) Recognizing safety and liveness.
Distrib Comput 2(3):117–126

16. Kindler E (1994) Safety and liveness properties: a survey. Bull
Eur Assoc Theor Comput Sci 53:268–272

17. Lamport L, Lynch N (1990) Distributed computing: models
and methods. In: Leeuwen Jv (ed) Handbook of theoretical
computer science. Elsevier, Amsterdam, pp 1157–1199

18. Barber KS, Graser TJ, Holt J (2002) Providing early feedback
in the development cycle through automated application of
model checking to software architectures. In: 16th international
conference on automated software engineering, San Diego, CA

19. ITU-TS (1996) ITU-TS Recommendation Z.120: Message
Sequence Charts (MSC). ITU, Geneva

20. Schneider F et al (1998) Validating requirements for fault tol-
erant systems using model checking. In: 3rd international
conference on requirements engineering, Colorado Springs, CO

21. Barber KS, Holt J (2001) Software architecture correctness.
IEEE Softw 18(8):64–65

22. Fishwick PA (1995) Simulation model design and execution:
building digital worlds. Prentice-Hall, Englewood Cliffs, NJ

23. Yacoub S, Cukic B, Ammar H (1999) Scenario-based reliability
analysis of component-based software. In: 10th international
symposium on software reliability engineering, Boca Raton, FL

24. Heitmeyer C, Kirby J, Labaw B (1998) Applying the SCR
requirements method to a weapons control panel: an experience
report. In: 2nd workshop on formal methods in software
practice (FMSP’98), Clearwater Beach, FL

25. Cheung S, Giannakopoulou D, Kramer J (1997) Verification of
liveness properties using compositional reachability analysis.
In: ESEC/FSE ’97, Zurich

26. Cheung SC, Kramer J Checking subsystem safety properties in
compositional reachability analysis. In: 18th international
conference on software engineering, Berlin

27. Bose P (1999) Scenario-driven analysis of component-based
software architecture models. In: IFIP WICSA, San Antonio,
TX

28. Aquilana F, Balsamo S, Inverardi P (2001) Performance anal-
ysis at the software architectural design level. Perform Evalu-
ation 45(2–3):147–178

29. Petriu D, Shousha C, Jalnapurkar A (2000) Architecture-based
performance analysis applied to a telecommunication system.
IEEE Trans Softw Eng 26(11):1049–1065

30. Spitznagel B, Garlan D (1998) Architecture-based performance
analysis. In: 10th international conference on software engi-
neering and knowledge engineering, San Francisco, CA

31. Li JJ (1998) Performance prediction based on semi-formal
software architectural description. In: International conference
on performance in computing and communications, Phoenix/
Tempe, AZ

32. Lung C-H, Jalnapurkar A, El-Rayess A (1998) Performance-
oriented software architecture engineering: an experience re-
port. In: Workshop on software performance (WOSP98), Santa
Fe, NM

33. Williams LG, Smith CU (1998) Performance evaluation of
software architectures. In: Workshop on software and perfor-
mance, Santa Fe, NM

34. Bernardo M, Ciancarini P, Donatiello L (2000) AEMPA: a
process algebraic description language for the performance
analysis of software architectures. In: 2nd international
workshop on software and performance (WOSP 2000),
Ottawa

35. Andolfi F et al (2000) Deriving performance models of software
architecture from message sequence charts. In: 2nd interna-
tional workshop on software performance, Ottawa

36. Li JJ, Micallef J (1997) Automatic simulation to predict
software architecture reliability. In: 8th international sym-
posium on software reliability engineering, Albuquerque,
NM

37. Gokhale SS et al (1998) An analytical approach to architecture-
based software reliability prediction. In: IEEE international
computer performance and dependability symposium, Dur-
ham, NC

235



www.manaraa.com


